HPTM280 Combined Pressure & Temperature Transmitter

Nanjing Hangjia Electronic Technology Co., Ltd.

Overview

HPTM280 digital temperature and pressure integrated transmitter adopts the industry's leading and unique design structure, with built-in independent measurement of high-stability pressure sensitive elements and high-precision temperature sensing elements, which can simultaneously achieve accurate measurement of medium pressure and temperature. In addition, the product has a field display, which can alternately display pressure and temperature values, and can also be networked through RS485.

The product has been screened for long-term aging and stability, with reliable and stable performance. It can be used in places with relatively harsh environments and can meet the accurate measurement of multiple parameters at one measuring point. It is widely used in the simultaneous measurement of fluid pressure and temperature in the field of industrial process control.

Features

- Pressure and temperature are measured in parallel
- Temperature sensor is placed in front for smaller error
- Temperature probe is supported
- On-site display, alternately displays pressure and temperature
- RS485 communication
- Optional built-in lithium battery power supply

Measuring principle

The temperature sensor is a built-in high-precision PT100 or PT1000. The measurement position is close to the medium to be measured, with a small temperature difference and a fast response. Temperature measurement also supports a probe structure to penetrate the center of the temperature to be measured. The pressure measurement channel uses a high-stability and high-precision silicon piezoresistive pressure sensing core. The process pressure acts directly on the isolation diaphragm, causing the diaphragm to deform. The signal conditioning circuit converts the MEMS chip signal into a standard current or voltage signal output.

Parameters

Pressure Range	0 \sim 50kPa···40MPa (Gauge).			
	0~50kPa···10MPa (Absolute)			
Temperature Range	-40∼100°C			
	Note: Supports customized intermediate range, such as 0 ${\sim}80^\circ { m C}$, etc.			
Measuring Medium	Various liquids, gases and various compatible with contact materials			
Output Signal	RS485			
Power Supply	Vs= $3.1^{8}V_{DC}$ (built-in lithium battery ER14250, 3.6V 1200mAh)			
	Vs=5V _{DC} (external power supply)			
	Vs=24V _{DC} (external power supply)			
Accuracy	Pressure: ±0.5%FS standard. ; ±0.2%FS option			
	Temperature: ± 0.4 °C			
Long-term stability	±0.25%FS/year			
Power Consumption				
Standby current	<20uA			
Acquisition cycle	0 ~ 65535 seconds			
Power Consumption	The sensor acquisition cycle is 1s, and the power consumption is about			
	300uA			
	The sensor acquisition period is 3s, and the power consumption is about			
	110uA			
	Sensor acquisition cycle 5s, power consumption about 75uA			
	Note: The longer the collection cycle, the lower the power consumption			
Compensation temperature	-10~70°C			
Zero-point Temperature Coefficient	$\pm 1.5\%$ FS reference 30 $^\circ\mathrm{C}$, within temperature compensation range			
Full scale Temperature Coefficient	$\pm 1.5\%$ FS reference 30 $^\circ\mathrm{C}$, within temperature compensation range			
Medium Temperature	-40∼100℃			
Ambient Temperature	-30∼70°C			
Storage Temperature	-30~70°C			
Protection grade	IP65			
Electric protection	Reverse polarity protection			
Mechanical Stability	Vibration 20g(20~5000Hz)			
	Shock resistance 20g(11ms)			
Insulation resistance	>100MΩ 500VDC			
Dielectric strength	500VAC 50Hz test voltage applied for 1min without breakdown and arcing			

~120 ~115 90 AT-KEEL Ø68 ALINE-IUI 0 м φ Φ 0 2 \$36

Structural Drawings (Unit: mm)

Note:

- 1. The dimensions listed in the figure may change with the update of the process
- 2. Support customized appearance structure with temperature probe

Structural Materials

G 1/2 33

Ordering code	Part	Material	
S4	Droccuro port	SS304	
S6	Pressure port	SS316L	
M1	Pressure sensor	SS316L	
F1	O-ring	FKM	
Y1	Display Shell	Aluminum alloy	

Electrical Connections

Output signal	4-wire Modbus-RTU/RS485				
Signal Definition	Power+ (+V)	Power-(-V)	RS485A	RS485B	
Supply voltage 24V	+24V	GND	485A	485B	
Supply voltage 5V	+5V	GND	485A	485B	
Battery powered	battery+	battery-	485A	485B	

Ordering Guide

